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Abstract
We present a conjecture for the density matrix of a finite segment of the
XXZ chain coupled to a heat bath and to a constant longitudinal magnetic
field. It states that the inhomogeneous density matrix, conceived as a map
which associates with every local operator its thermal expectation value, can be
written as the trace of the exponential of an operator constructed from weighted
traces of the elements of certain monodromy matrices related to Uq(ŝl2) and
only two transcendental functions pertaining to the one-point function and
the neighbour correlators, respectively. Our conjecture implies that all static
correlation functions of the XXZ chain are polynomials in these two functions
and their derivatives with coefficients of purely algebraic origin.

PACS numbers: 05.30.−d, 75.10.Pq

1. Introduction

The past two decades have seen significant progress in the understanding of the correlation
functions of local operators in spin- 1

2 chains. This report is about the extension of recent results
for the ground-state correlators of the XXZ chain, surveyed below, to finite temperatures.

The development was initiated with the derivation of a multiple integral formula for the
density matrix of the XXZ chain by the Kyoto school [24–26] which relies on the bosonization
of q-vertex operators and on the q-Knizhnik–Zamolodchikov equation [18, 35]. An alternative
derivation of the multiple integral formula was found in [29]. It is based on the algebraic Bethe
ansatz and made it possible to include a longitudinal magnetic field.
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The multiple integral formulae, however, turned out to be numerically inefficient. They
were hence not much used before it was realized [9] that they may be calculated by hand,
at least in principle. This result generalized after many years Takahashi’s curious formula
[39] for the next-to-nearest neighbour correlator and inspired a series of works devoted to
the explicit calculation of short-distance correlators in the XXX [10, 11, 15, 32–34] and XXZ
chains [27, 28, 40]. It further triggered a deep investigation into the mathematical structure of
the inhomogeneous density matrix of the XXZ chain, which was started in [12–14] and still
continues [2–7].

In [2], a minimal set of equations that determines the inhomogeneous density matrix was
derived and was termed the reduced q-Knizhnik–Zamolodchikov (rqKZ) equation. The rqKZ
equation made it possible to prove that the correlation functions of the inhomogeneous XXX
model depend on a single transcendental function which is basically the two-spinon scattering
phase. This was generalized to the XXZ and XYZ models in [3, 7], where further transcendental
functions were needed.

A new ‘exponential form’ of the density matrix was derived in [4, 5] for which the
homogeneous (physical) limit can be taken directly. The most recent papers [6, 8] aimed
at understanding how the exponential formula works in the ‘free fermion’ XX limit. This
also led to a novel formulation for generic q. A crucial tool was a disorder field acting on
half of the infinite lattice with ‘strength’ α. It regularized the problem further and simplified
the exponential formula in a way that the exponent depends only on a single transcendental
function ω and on special operators b and c resembling annihilation operators of (Dirac)
fermions.

From the above studies we observe the following. In the inhomogeneous case, the
multiple integrals reduce to polynomials in a small number of different single integrals related
to the correlation functions of only nearest-neighbouring lattice sites. These constitute a set of
transcendental functions which determine what we call the ‘physical part’ of the problem. The
coefficients of the polynomials are rational functions of the inhomogeneity parameters. They
are constructed from various L-operators related to the symmetry of the models and constitute
the ‘algebraic part’. We call such type of separation of the problem into a finite physical part
and into an algebraic part ‘factorization’, since it can be traced back to the factorization of
multiple integrals into single integrals. We believe that factorization is a general feature of
integrable models (for a similar phenomenon in the form factors for the Ising model see [16]).

A generalization of the integral formula for the density matrix of the XXZ chain to finite
temperature and magnetic field was derived in [19, 21, 22] by combining the techniques
developed in [29] with the finite temperature formalism of [30, 31, 36–38]. Remarkably,
the form of the multiple integrals for the density matrix elements is the same in all known
cases. The physical parameters (temperature T, magnetic field h, chain length L) enter only
indirectly through an auxiliary function which is defined as a solution of a nonlinear integral
equation.

The auxiliary function enters into the multiple integrals as a weight function. This implies
that the factorization technique developed for the ground-state correlators in [9] does not work
any longer. In our previous work [1], we nevertheless obtained a factorization of the correlation
functions of up to three neighbouring sites in the XXX model at arbitrary T , h by implicit use
of a certain integral equation. Comparing the factorized forms with the known results for the
ground state we could conjecture an exponential formula for the special case of T > 0 but
h = 0. Surprisingly, the formula shares the same algebraic part with its T = 0 counterpart;
one only has to replace the transcendental function by its finite temperature generalization.
The results easily translated into similar results for the ground state of the system of finite
length [17].
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In this work, we extend our analysis to the periodic XXZ chain

HN = J

N∑
j=−N+1

(
σx

j−1σ
x
j + σ
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j−1σ
y

j + �
(
σ z

j−1σ
z
j − 1

))
(1)

in the antiferromagnetic regime (J > 0 and � = ch(η) > −1) and in the thermodynamic limit
(L = 2N → ∞). We identify an appropriate set of basic functions describing the neighbour
correlators in the inhomogeneous case. The algebraic part of the problem without magnetic
field is neatly formulated in terms of the operators b and c as in the ground-state case. The
meaning of the disorder parameter α, necessary for the construction of these operators, is yet
to be understood for finite temperatures. It, however, naturally modifies one of our auxiliary
functions, the density function G and allows us to reduce the number of basic functions
characterizing the physical part from two to one.

Still, we go one important step further. We extend our conjectured exponential formula
for the (finite temperature) density matrix such as to include the magnetic field. At first
sight, this may seem to require only trivial modifications, as the Hamiltonian commutes with
the Zeeman term. The magnetic field, however, breaks the Uq(ŝl2) symmetry and, as far as
the factorization of the integrals is concerned, brings about serious difficulties even for the
ground-state correlator problem. For this reason, an essential modification of the operator in
the exponent of our exponential formula is required which leads to novel formulae even in the
zero temperature limit. The prescription is, however, remarkably simple. We have to add a
term whose algebraic part is determined by a new operator H, such that the operator in the
exponent is now a sum of two ingredients. One is formally identical to the operator already
present at vanishing magnetic field, the other one is constructed from H (note that even the
former part is not independent of the field; it includes transcendental functions which are even
functions of h).

We finally point out a simplification compared to the ground-state case, particularly
relevant at finite magnetic field. Although we are dealing with highly non-trivial functions, all
correlation functions should simplify in the vicinity of T = ∞. Thus, the high-temperature
expansion technique can be applied to the multiple integral formulae at T > 0 as was shown
in [41, 42]. We use this in order to test our conjecture for the exponential form of the density
matrix.

Our paper is organized as follows. In section 2, we recall the definition of the density
matrix and the multiple integral formulae. In section 3, we describe the basic functions that
determine the physical part of the correlation functions. Our main result is presented in
section 4 (see equations (36)–(38)). It is a conjectured exponential formula for the density
matrix of the XXZ chain at finite temperature and magnetic field. Section 5 is devoted to
the simplest examples of the correlation functions, the cases of n = 1, 2, 3, for which we
show novel explicit formulae. In section 6, we summarize and discuss our results. Appendix
A contains the proofs of two formulae needed in the main body of the paper, appendix B a
derivation of the factorized form of the density matrix for n = 2 directly from the double
integrals and appendix C a short description of the high-temperature expansion technique.

2. Multiple integral representation of the density matrix

Let us recall the definition of the density matrix of a chain segment of length n. We would
like to take into account a longitudinal magnetic field h which couples to the conserved
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z-component

Sz
N = 1

2

N∑
j=−N+1

σ z
j (2)

of the total spin. Then, the statistical operator of the equilibrium system at temperature T is
given by

ρN(T , h) = e− HN
T

+
hS

z
N

T

tr−N+1,...,N e− HN
T

+
hS

z
N

T

. (3)

From this operator we obtain the density matrix of a chain segment of length n by tracing out
the complementary degrees of freedom,

Dn(T , h|N) = tr−N+1,...,−1,0,n+1,n+2,...,N ρN(T , h), n = 1, . . . , N. (4)

The density matrix Dn(T , h|N) encodes the complete equilibrium information about the
segment consisting of sites 1, . . . , n which means that every operator O acting non-trivially at
most on sites 1, . . . , n has thermal expectation value

〈O〉T ,h = tr1,...,n(Dn(T , h|N)O). (5)

We know a multiple integral representation for the density matrix (4) in two limiting
cases, the thermodynamic limit N → ∞ [19, 21] and the zero temperature and zero magnetic
field limit [17]. For the two limits we shall employ the notation

Dn(T , h) = lim
N→∞

Dn(T , h|N), Dn(N) = lim
T →0

lim
h→0

Dn(T , h|N). (6)

These two density matrices are conveniently described in terms of the canonical basis of
endomorphisms on (C2)⊗n locally given by 2 × 2 matrices eα

β, α, β = ±, with a single
nonzero entry at the intersection of row β and column α,

Dn(T , h) = Dn
β1,...,βn

α1,...,αn
(T , h)e1

β1
α1

· · · en
βn

αn
, Dn(N) = Dn

β1,...,βn

α1,...,αn
(N)e1

β1
α1

· · · en
βn

αn
, (7)

where we assume implicit summation over all αj , βk = ±. We further regularize the density
matrices by introducing a set of parameters λ1, . . . , λn;α in such a way that

Dn(T , h) = lim
λ1,...,λn→0

lim
α→0

Dn
β1,...,βn

α1,...,αn
(λ1, . . . , λn|T , h;α)e1

β1
α1

· · · en
βn

αn
, (8a)

Dn(N) = lim
λ1,...,λn→η/2

lim
α→0

Dn
β1,...,βn

α1,...,αn
(λ1, . . . , λn|N;α)e1

β1
α1

· · · en
βn

αn
. (8b)

From here on we shall concentrate on the temperature case (8a). Later we will indicate the
modifications necessary for (8b). We call Dn

β1,...,βn
α1,...,αn

(λ1, . . . , λn|T , h;α) the inhomogeneous
density matrix element with inhomogeneity parameters λj . For α = 0 it has a clear
interpretation in terms of the six-vertex model with spectral parameters λ1, . . . , λn on n
consecutive vertical lines [22]. For h, T = 0 the variable α can be interpreted as a disorder
parameter [25]. In the general case we simply define the inhomogeneous density matrix
element by the following multiple integral:

Dn
β1,...,βn

α1,...,αn
(λ1, . . . , λn|T , h;α)

= δs,m−s ′

 s∏
j=1

∫
C

dωj e−αη

2π i(1 + a(ωj ))

xj −1∏
k=1

sh(ωj − λk − η)

n∏
k=xj +1

sh(ωj − λk)


×
 n∏

j=s+1

∫
C

dωj eαη

2π i(1 + a(ωj ))

xj −1∏
k=1

sh(ωj − λk + η)

n∏
k=xj +1

sh(ωj − λk)


× det[−G(ωj , λk;α)]∏

1�j<k�n sh(λk − λj ) sh(ωj − ωk − η)
. (9)
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Figure 1. The canonical contour C for the off-critical regime � > 1 (left) and for the critical
regime −1 < � < 1 (right).

Here, s is the number of plus signs in the sequence (αj )
n
j=1 and s ′ is the number of minus

signs in the sequence (βj )
n
j=1. The factor δs,m−s ′ reflects the conservation of the z-component

of the total spin. For j = 1, . . . , s the variable xj denotes the position of the j th plus sign in
(αj )

n
j=1 counted from the right. For j = s + 1, . . . , n it denotes the position of (j − s)th minus

sign in (βj )
n
j=1. The integration contour depends on η. We show it in figure 1. This contour

will also appear in the integral equations which determine the transcendental functions a, a

and G and in the definition of the special functions in the following section that determine the
physical part in the factorized form of the correlation functions. For this reason, we call it the
canonical contour.

The integral equation for a is nonlinear,

ln a(λ) = − h

T
− 2J sh2(η)

T sh(λ) sh(λ + η)
−
∫
C

dω

2π i

sh(2η) ln(1 + a(ω))

sh(λ − ω + η) sh(λ − ω − η)
. (10)

There is a similar integral equation for a (see [20]); however, since a = 1/a we do not need
to consider it here. a is usually called the auxiliary function. The combination 1/(1 + a) has
a natural interpretation as a generalization of the fermi function to the interacting case [23].
Note that the right-hand side of equation (10) is the only place where the thermodynamic
variables T and h enter explicitly into our formulae for the correlation functions. They neither
enter explicitly into the multiple integral formula (9) nor into the linear integral equation for
G which is

G(λ,µ;α) = −coth(λ − µ) + eαη coth(λ − µ − η) +
∫
C

dω G(ω,µ;α)

2π i(1 + a(ω))
K(λ − ω;α). (11)

G can be interpreted as a generalized magnetization density (see [20]). Compared to our
previous definition [20] we introduced the additional parameter α here which also enters the
kernel,

K(λ;α) = eαη coth(λ − η) − e−αη coth(λ + η). (12)

An equivalent integral equation for G which uses a instead of a and which is sometimes useful
is

G(λ,µ;α) = −coth(λ − µ) + e−αη coth(λ − µ + η) −
∫
C

dω G(ω,µ;α)

2π i(1 + a (ω))
K(λ − ω;α).

(13)

Setting α = 0 the function G(λ,µ;α) turns into the function G(λ,µ) which played a crucial
role in our previous studies [1, 20, 22]. We have introduced α in such a way into (9)
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and (11) that for T , h = 0 the multiple integral representation (9) turns into the finite-
α expression that can be obtained within the q-vertex operator approach of [25]. Our main
motivation for introducing α into our functions was to enforce compatibility with the formalism
developed in [6], where α is an important regularization parameter. The usefulness of this
modification will become clear in section 4. The parameter α will allow us to write our
formula for the density matrix in factorized form in a very compact way.

Let us briefly indicate the changes that are necessary in the finite length case (8b). It turns
out [17] that Dn

β1,...,βn
α1,...,αn

(λ1, . . . , λn|N;α) has a multiple integral representation of the same
form as (9), that even the integral equation for G remains the same and that the only necessary
modification is in the driving term of the nonlinear integral equation (10), where the physical
parameters enter, which in this case are the length L = 2N of the chain and an arbitrary twist
� ∈ [0, 2π) of the periodic boundary conditions (for details see [17]). The nonlinear integral
equation for the finite length case is

ln a(λ) = −2i� + Lη + L ln

(
sh
(
λ − η

2

)
sh
(
λ + η

2

) )−
∫
C

dω

2π i

sh(2η) ln(1 + a(ω))

sh(λ − ω + η) sh(λ − ω − η)
. (14)

When we derived the multiple integral representation (9) in [17, 19] we assumed that the
inhomogeneity parameters λj are located inside the integration contour C. This has to be taken
into account when calculating the homogeneous limit in (8b), where the canonical contour
should be first shifted to ±η/2.

3. The basic functions

In this section, we describe the functions constituting the ‘physical part’ of the factorized
correlation functions of the XXZ chain at finite T and h. A description of the algebraic part will
be given in the next section. According to our experience, the physical part of the correlation
functions can be characterized completely by two transcendental functions ϕ and ω.

Let us start with the more simple function

ϕ(µ;α) = 1 +
∫
C

dω G(ω,µ;α)

π i(1 + a(ω))
. (15)

This function is related to the magnetization m(T , h) through ϕ(0; 0) = −2m(T , h) which
we expect to belong to the physical part if the magnetic field is nonzero.

In order to introduce the function ω we first of all define

ψ(µ1, µ2;α) =
∫
C

dω G(ω,µ1;α)

π i(1 + a(ω))
(−coth(ω − µ2) + e−αη coth(ω − µ2 − η)). (16)

Those readers who are familiar with our previous work [1] will recognize this as the anisotropic
and ‘α-deformed’ version of the function ψ(µ1, µ2) introduced there. The function ω is a
modification of ψ obtained by adding and multiplying some explicit functions:

ω(µ1, µ2;α) = −eα(µ1−µ2)ψ(µ1, µ2;α) − eα(µ1−µ2)

2 cosh2
(

αη

2

)K(µ1 − µ2;−α). (17)

Here K(λ;α) is the kernel defined in (12). The relation between ω(µ1, µ2;α) and
ψ(µ1, µ2;α) is similar to the relation between γ (µ1, µ2) and ψ(µ1, µ2) in the isotropic
case [1]. The function ω is closely related to the neighbour correlators (see appendix B). In
the critical regime for T , h → 0 it becomes the function ω(ζ, α) of the paper [6] if we set
ζ = eµ1−µ2 .

An important property which follows from the definitions (12) and (16) is that

ω(µ2, µ1;−α) = ω(µ1, µ2;α). (18)
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It implies

ω(µ2, µ1; 0) = ω(µ1, µ2; 0), ω′(µ2, µ1; 0) = −ω′(µ1, µ2; 0), (19)

where for later convenience we introduced the somewhat unusual notation

ω′(µ1, µ2;α) = ∂α(eα(µ2−µ1)ω(µ1, µ2;α)). (20)

At this point we would like to stress that the physical parameters T , h or N, respectively,
do not enter the definitions of ϕ and ω explicitly. The basic functions defined in this section are
therefore suitable for both the finite temperature and the finite length case, the only distinction
being the use of different auxiliary function (10) and (14), respectively.

In the high-temperature limit (see appendix C) we observe that

ω(µ1, µ2;α) = eα(µ1−µ2)

2
tanh2

(αη

2

)
K(µ1 − µ2;−α) + O

(
1

T

)
. (21)

Using equation (21) we conclude that both functions ω(µ1, µ2; 0) and ω′(µ1, µ2; 0) do not
have zeroth-order terms in their high-temperature expansions

ω(µ1, µ2; 0) = O(1/T ), ω′(µ1, µ2; 0) = O(1/T ). (22)

The same is true for the function ϕ,

ϕ(µ;α) = O(1/T ). (23)

We mention the properties of these functions for α = 0 with respect to reversal of the
magnetic field; ϕ(µ; 0) is an odd function of h,ψ(µ1, µ2; 0) and ∂αψ(µ1, µ2;α)|α=0 are
even. These properties will be implicitly used below. The proof relies on the simple fact that
the quantum transfer matrix (or its slight generalization, see below) associated with the present
model respects the spin reversal symmetry, and therefore the eigenvalues are even functions
of h.

Once this is realized, the proof for ϕ(µ; 0) is rather obvious. One only has to remember
the relation between ϕ(µ; 0) and the largest eigenvalue �(µ) of the quantum transfer matrix,

ϕ(µ; 0) = T
∂

∂h
ln �(µ). (24)

The above argument then implies that ϕ(µ; 0) is odd with respect to h.
The proof for ψ(µ1, µ2; 0) is less obvious. We first of all introduce a generalized system.

Consider an ‘alternating’ inhomogeneous transfer matrix. In the framework of the quantum
transfer matrix, we associate spectral parameters in alternating manner (u,−u, u,−u · · ·)
to 2N vertical bonds, while keeping the spectral parameter on the horizontal axis fixed as
µ2. Next we add 2M vertical bonds and associate with them spectral parameters again in
alternating manner, (u′ +µ1, µ1 −u′, u′ +µ1, µ1 −u′, . . .). We then take the limit N ,M → ∞
under the fine tuning, 2uN = 2βJ sh η, 2u′M = −2δJ sh η. Note that the original system is
recovered by taking δ = 0. By neglecting the term depending on the overall normalization,
one obtains the following expression for the modified largest eigenvalue �(µ2, µ1) of the
generalized quantum transfer matrix:

ln �(µ2, µ1) = −βh

2
−
∫
C

dω

2π i
e(ω − µ2) ln(1 + ā(ω,µ1)), e(λ) := sh(η)

sh(λ) sh(λ − η)
.

(25)

The modified auxiliary functions a(ω,µ1), ā(ω,µ1) satisfy equations similar to (10), and the
equation for the latter is relevant here:

ln ā(λ, µ1) = h

T
− 2J sh(η)

T
e(λ) + 2δJ sh(η) e(λ − µ1)

+
∫
C

dω

2π i
K(λ − ω; 0) ln(1 + ā(ω,µ1)). (26)
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We take the derivative of both sides of (26) with respect to δ,

σ(λ, µ1) = 2J sh(η)e(λ − µ1) +
∫
C

dω

2π i
K(λ − ω; 0)

σ (ω,µ1)

(1 + a(ω,µ1))
, (27)

where σ(λ, µ1) := 1
ā(λ,µ1)

∂
∂δ

ā(λ, µ1). One compares (11) with (26) and concludes

σ(λ, µ1) = 2J sh(η)G(λ,µ1; 0). (28)

Similarly, we take the derivative of ln �(µ2, µ1) with respect to δ and find

∂

∂δ
ln �(µ2, µ1) = −

∫
C

dω

2π i
e(ω − µ2)

σ (ω,µ1)

(1 + a(ω,µ1))

= −
∫
C

dω

2π i
e(ω − µ2)

2J sh(η)G(ω,µ1; 0)

(1 + a(ω,µ1))

= −J sh(η)

∫
C

dω

π i

G(ω,µ1; 0)

(1 + a(ω,µ1))
(coth(ω − µ2 − η) − coth(ω − µ2)), (29)

where we have used (28) in the second equality. By comparing the above equation with (16),
one obtains

ψ(µ1, µ2; 0) = 1

J sh(η)

∂

∂δ
ln �(µ2, µ1)|δ=0. (30)

Then, the evenness of ψ(µ1, µ2; 0) follows from the same property of the generalized transfer
matrix.

Finally, we show that ∂αψ(λ1, λ2;α)|α=0 is also even. To prove this we consider relation
(B.5) in appendix B. The lhs, D+−

−+(λ1, λ2) + D−+
+−(λ1, λ2), is invariant under + ↔ −; hence,

it is even with respect to h. The first term in the rhs is also even as it is proportional to
ψ(µ1, µ2; 0)(see (B.11)). Thus, the content of the bracket in the second term of the rhs should
also be even. Thanks to (B.3) and (B.17) it is represented as

D+
+(λ1) + D+

+(λ2) − 2D++
++(λ1, λ2) = coth(η)

2
ψ(λ1, λ2; 0)

+
coth(λ1 − λ2)

2η
∂αψ(λ1, λ2;α)|α=0.

Thus, we conclude that ∂αψ(λ1, λ2;α)|α=0 is even.

4. Thermal correlation functions of local operators

In this section, we are formulating our main result which is a conjectured explicit formula for
the correlation functions of local operators in the XXZ chain at finite temperature and finite
magnetic field. The sources of this conjecture are the results of the previous two sections that
followed from the finite temperature algebraic Bethe ansatz approach of [17, 20, 22] and the
results of [4, 6, 7], where the exponential formula was discovered as a consequence of studying
the rqKZ equation. Unfortunately, both approaches differ considerably in spirit and notation.
We will try to reconcile them while keeping as much as possible of the original notation. We
have to ask the reader to be forbearing though if this sometimes leads to confusion.

In [6], much emphasis was laid on developing a formalism which applies directly to the
infinite chain with lattice sites j ∈ Z. To keep things closely parallel we therefore concentrate
in this section on the temperature case and comment on the finite length case only later in
section 6. All operators O which act non-trivially on any finite number of lattice sites span a
vector space W . Because of the translational invariance of the Hamiltonian we may content
ourselves (as long as we keep α = 0) with operators which act non-trivially only on positive
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lattice sites, j ∈ N. We shall denote the restriction of O to the first n lattice sites by O[1,n].
The inhomogeneous density matrix satisfies the reduction identity

trn Dn(λ1, . . . , λn|T , h; 0) = Dn−1(λ1, . . . , λn−1|T , h; 0). (31)

It follows that the inductive limit

lim
n→∞ tr1,...,n(Dn(λ1, . . . , λn|T , h; 0)O[1,n]) (32)

exists and defines an operator D∗
T ,h : W → C such that

D∗
T ,h(O) = 〈O〉T ,h (33)

is the thermal average at finite magnetic field of the local operator O in the inhomogeneous
XXZ model. Note that

D∗
T ,h

(
e1

α1
β1

. . . en
αn

βn

) = Dn
β1,...,βn

α1,...,αn
(λ1, . . . , λn|T , h; 0). (34)

For this reason we may interpret D∗
T ,h as a kind of ‘universal density matrix’ of the XXZ chain.

Let us define a linear functional tr : W → C by

tr(O) = · · · 1
2 tr1

1
2 tr2

1
2 tr3 · · · (O), (35)

with trj being the usual traces of 2 × 2 matrices. Then we conjecture that an operator
� : W → W exists such that D∗

T ,h = tr e�. More precisely we propose the following.

Conjecture. For all O ∈ W the density matrix D∗
T ,h can be expressed as

D∗
T ,h(O) = tr(e�(O)), (36)

where tr is the trace functional (35) and � : W → W is a linear operator that can be
decomposed as

� = �1 + �2 (37)

with

�1 = − lim
α→0

∫∫
dµ1

2π i

dµ2

2π i
ω(µ1, µ2;α) b(ζ1;α − 1) c(ζ2;α), (38a)

�2 = − lim
α→0

∫
dµ1

2π i
ϕ(µ1;α) H(ζ1;α). (38b)

Here ζj = eµj , j = 1, 2, and ω(µ1, µ2;α) and ϕ(µ1;α) are the functions defined in (17) and
(15). The operators b, c and H do not depend on T or h. They are purely algebraic. Their
construction will be explained below. The integrals mean to take residues at the simple poles
of b, c and H located at the inhomogeneities ξj (see below).

In fact, the operators b and c are the same as in the ground-state case [6]. The operator H
is new in the present context4, but can be defined using the same algebraic notions underlying
the construction of b and c. Note that limh→0 ϕ(µ; 0) = 0 which implies that limh→0 �2 = 0.
Hence, as in the isotropic case [1], we observe that the algebraic structure of the factorized
form of the correlation functions is identical in the ground state and for finite temperature as
long as the magnetic field vanishes. Due to the properties of the function ω we recover the
result of [6] in the zero temperature limit at vanishing magnetic field. In the high-temperature
limit, on the other hand, we conclude with (22) and (23) that limT →∞ � = 0 and that all
correlation functions trivialize in the expected way:

lim
T →∞

D∗
T ,h = tr. (39)

4 Compare, however, equation (68) with the operator k(0) defined in lemma A.2 of [8].
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For the definition of the operators b, c and H we first of all generalize the space of local
operators W to a space of quasi-local operators of the form

eαη
∑0

k=−∞ σ z
k O, (40)

where O is local and denote this space by Wα . The operators b, c and H then act as

b(ζ ;α) : Wα → Wα+1, c(ζ ;α) : Wα → Wα−1, H(ζ ;α) : Wα → Wα (41)

which implies in particular that b(ζ1;α − 1)c(ζ2;α) : Wα → Wα .
The z-component of the total spin is the formal series Sz

∞ (see equation (2)). We denote
its adjoint action by

S(X) = [
Sz

∞, X
]
. (42)

Then qαS : Wα → Wα . The spin reversal operator defined by

J(X) =
∏

j∈Z

σx
j

X

∏
j∈Z

σx
j

 (43)

clearly is a map J : Wα → W−α .
The operators b, c and H will be defined in two steps. We first define endomorphisms

b[kl], c[kl] and H[kl] acting on End(V), where the tensor product V = Vk ⊗ · · · ⊗ Vl represents
the space of states of a segment of the infinite spin chain reaching from site k to site l, and
Vj is isomorphic to C

2. Then we use that these endomorphisms have a reduction property
similar to (31) which allows us to extend their action to Wα by an inductive limit procedure.
The endomorphisms b[kl], c[kl] and H[kl] are constructed from weighted traces of the elements
of certain monodromy matrices related to Uq(ŝl2). These monodromy matrices are obtained
from products of L-matrices with different auxiliary spaces.

The simplest case is directly related to the R-matrix of the six-vertex model,

R(ζ ) = (qζ − q−1ζ−1)


1 0 0 0
0 β(ζ ) γ (ζ ) 0
0 γ (ζ ) β(ζ ) 0
0 0 0 1

 , (44)

where

β(ζ ) = (1 − ζ 2)q

1 − q2ζ 2
, γ (ζ ) = (1 − q2)ζ

1 − q2ζ 2
(45)

and q = eαη. Let us fix an auxiliary space Va isomorphic to C
2. Then La,j (ζ ) = Ra,j (ζ ) is

the standard L-matrix of the six-vertex model. The corresponding monodromy matrix is

Ta,[k,l](ζ ) = La,k(ζ/ξk) · · · La,l(ζ/ξl). (46)

It acts on Va ⊗ V . We are interested in operators acting on End(V). Such type of operators
are naturally given by the adjoint action of operators acting on V . An example is the transfer
matrix t[k,l](ζ ) defined by

t[k,l](ζ )(X) = tra Ta,[k,l](ζ )−1XTa,[k,l](ζ ) (47)

for all X ∈ End(V). It will be needed in the definition of the operator H[k,l] below.
Further following [6] we introduce another type of monodromy matrices for which the

auxiliary space is replaced with the q-oscillator algebra Osc generated by a, a∗, q±D modulo
the relations

qDa∗ = a∗qD+1, qDa = aqD−1,

a∗a = 1 − q2D, aa∗ = 1 − q2D+2.
(48)
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We consider two irreducible modules W± of Osc,

W + =
⊕
k�0

C|k〉, W− =
⊕
k�−1

C|k〉, (49)

defined by the action

qD|k〉 = qk|k〉, a|k〉 = (1 − q2k)|k − 1〉, a∗|k〉 = (1 − δk,−1)|k + 1〉 (50)

of the generators. The L-operators L±(ζ ) ∈ Osc ⊗ End(V) are defined by

L+(ζ ) = iζ−1/2q−1/4(1 − ζa∗σ + − ζaσ− − ζ 2q2D+2σ−σ +)qσzD, (51a)

L−(ζ ) = σxL+(ζ )σ x. (51b)

The corresponding monodromy matrices are

T ±
A,[k,l](ζ ) = L±

A,l(ζ/ξl) · · · L±
A,k(ζ/ξk), (52)

where the index A refers to the auxiliary space Osc. We denote their (inverse) adjoint action
by

T
±
A,[k,l](ζ )−1(X) = T ±

A,[k,l](ζ )−1XT ±
A,[k,l](ζ ) (53)

for all X ∈ End(V). Here, the inverse on the right-hand side is taken for both auxiliary and
‘quantum’ spaces. The analogue of the transfer matrix t[k,l] in this case are two Q-operators
Q± (see [6]). Since we need only one of them here we leave out the superscript and define5

Q[k,l](ζ, α) = tr+
A

(
q2αDAT

+
A,[k,l](ζ )−1

)
. (54)

Here tr+
A signifies that the trace is taken over W +. Similarly, we will denote the trace over W−

by tr−A .
Now we are prepared to define the restriction of the operator H to End(V),

H[k,l](ζ ;α) = Q[k,l](ζ ;α) t[k,l](ζ ). (55)

We show below that this definition (in the limit α → 0) can be inductively extended to Wα . To
avoid possible confusion let us note that in fact the operator H defined by formula (55) is not
the left-hand side of Baxter’s TQ-relation. In order that it were we would need to ‘α-deform’
the t-operator as well.

In order to obtain b[k,l] and c[k,l] and also another form of the operator H[k,l] we recall the
fusion technique used in [6]. There the fused L-operators

L±
{A,a},j (ζ ) = (

G±
A,a

)−1
L±

A,j (ζ )Ra,j (ζ )G±
A,a (56)

were defined, where

G±
A,a = q∓σ z

a DA(1 + a∗
aσ

±). (57)

The application of G+
A,a transforms L±

A,j (ζ )Ra,j (ζ ) into a matrix of lower triangular form on
Va ,

L+
{A,a},j (ζ ) = (ζq − ζ−1q−1)

(
L+

A,j (q
−1ζ )q−σ z

j /2 0

γ (ζ )L+
A,j (qζ )σ +

j q−2DA+1/2 β(ζ )L+
A,j (qζ )qσz

j /2

)
a

. (58)

5 Here, we use a slightly different definition of Q-operator in comparison with Q+ in [6], see formula (2.10) there.
The difference is an additional factor (1 − q2(α−S)).
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The inverse is also of lower triangular form and is given by

L+
{A,a},j (ζ )−1 = 1

qζ − q−1ζ−1

×
(

qσz
j /2L+

A,j (q
−1ζ )−1 0

−γ (q−1ζ )σ +
j q−2DA−1/2L+

A,j (q
−1ζ )−1 β(ζ )−1q−σ z

j /2L+
A,j (qζ )−1

)
a

. (59)

Correspondingly

L−
{A,a},j (ζ ) = σx

a σ x
j L+

{A,a},j (ζ )σ x
a σ x

j (60)

is of upper triangular form. It follows that similar statements hold for the monodromy matrices

T ±
{A,a},[k,l](ζ ) = (

G±
A,a

)−1
T ±

A,[k,l](ζ )Ta,[k,l](ζ )G±
A,a. (61)

T +
{A,a},[k,l](ζ ) acts as a lower triangular matrix in Va, T

−
{A,a},[k,l](ζ ) as an upper triangular

matrix. As before we are interested in the adjoint action of the fused monodromy matrices on
endomorphisms X ∈ End(V). Following [6] we define

T
±
{A,a},[k,l](ζ )−1(X) = T ±

{A,a},[k,l](ζ )−1XT ±
{A,a},[k,l](ζ ) (62)

for all X ∈ End(V).
Regarding T

±
{A,a},[k,l](ζ )−1 as matrices acting on Va as in [6] we may write their entries as

T
+
{A,a},[k,l](ζ )−1 =

(
A

+
A,[k,l](ζ ) 0

C
+
A,[k,l](ζ ) D

+
A,[k,l](ζ )

)
a

,

T
−
{A,a},[k,l](ζ )−1 =

(
A

−
A,[k,l](ζ ) B

−
A,[k,l](ζ )

0 D
−
A,[k,l](ζ )

)
a

.

(63)

The entries of these matrices are elements of Osc ⊗ End(V). We are now prepared to define
b[k,l] and c[k,l],

c[k,l](ζ, α) = qα−S[k,l](1 − q2(α−S[k,l])) sing
[
ζ α−S[k,l] tr+

A

(
q2αDAC

+
A,[k,l](ζ )

)]
, (64a)

b[k,l](ζ, α) = q2S[k,l] sing[ζ−α+S[k,l] tr−A(q−2α(DA+1)
B

−
A,[k,l](ζ ))]. (64b)

The symbol ‘sing’ means taking the singular part at ζ = ξj , j = 1, . . . , n (cf equation (2.13)
of [6]). These operators raise or lower the z-component of the total spin by one,

[S[k,l], c[k,l](ζ, α)] = c[k,l](ζ, α), [S[k,l], b[k,l](ζ, α)] = −b[k,l](ζ, α). (65)

Their properties were extensively studied in [6, 8]. Here we shall only need the following.

Proposition 1. Reduction properties [6]:

c[k,l](ζ, α)(X[k,l−1]Il) = c[k,l−1](ζ, α)(X[k,l−1])Il,

b[k,l](ζ, α)(X[k,l−1]Il) = b[k,l−1](ζ, α)(X[k,l−1])Il,

c[k,l](ζ, α)
(
qασz

k X[k+1,l]
) = q(α−1)σ z

k c[k+1,l](ζ, α)(X[k+1,l]),

b[k,l](ζ, α)
(
qασz

k X[k+1,l]
) = q(α+1)σ z

k b[k+1,l](ζ, α)(X[k+1,l]).

(66)

From this it follows that c[k,l](ζ, α) can be inductively extended to an operator c(ζ, α) : Wα →
Wα−1. Similarly b[k,l](ζ, α) inductively extends to an operator b(ζ, α) : Wα → Wα+1. These
are the operators appearing in the definition (38a) of �1.
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Using the simple relation(
G+

A,a

)−1
q2αDAG+

A,a = q2αDA

(
1 (1 − q−2α)a∗

A

0 1

)
a

(67)

and the concrete form of L+
{A,a},j (ζ ) and L+

{A,a},j (ζ )−1 one can obtain

H[k,l](ζ ;α) � (1 − q−2α) tr+
A

(
q2αDAa∗

AC
+
A,[k,l](ζ )

)
, (68)

where the symbol � means equality up to the regular part when ζ → ξj . Since the function
ϕ(µ, α) is regular when µ → 0, the regular part of H[k,l](ζ ;α) does not contribute to the
right-hand side of (38b). Formula (68) looks rather similar to the definition (64a) of the
operator c[k,l]. The essential difference is due to the insertion of a∗

A under the trace. In contrast
to the c[k,l]-operator which increases the total spin, the operator H[k,l] does not change the total
spin.

4.1. Properties of the operators �1 and �2

Assuming for a moment that the limit on the right-hand side of (38a) exists we can conclude
with (66) that

(�1)[k,l](X[k,l−1]Il) = (�1)[k,l−1](X[k,l−1])Il,

(�1)[k,l](IkX[k+1,l]) = Ik(�1)[k+1,l](X[k+1,l]).
(69)

Due to this property one can define �1 as the inductive limit of its restriction

�1 = lim
k→−∞

lim
l→∞

(�1)[k,l]. (70)

As we shall discuss later the same is also true for the operator �2.
But before we come to this point let us check whether the limits on the right-hand side of

(38a) and (38b) are really well defined.

Proposition 2. The limits on the right-hand side of equations (38a) and (38b) exist.

Proof. The existence of the limit in (38b) follows from formula (68), because taking the trace
there can result in at most a simple pole 1/(1 − qα). This pole will be cancelled by the factor
(1 − q−2α) which stands in front of the trace in (68).

In order to prove the existence of the limit in (38a) we use an alternative representation
of �1,

�1 = − lim
α→0

[
1

qα − q−α

∫∫
dµ1

2π i

dµ2

2π i

(
ζ1

ζ2

)α

ω(µ2, µ1;α)X̃(ζ1, ζ2;α)

]
, (71)

where6

X̃(ζ1, ζ2;α) = singζ1,ζ2
[tra,b(Ba,b(ζ1/ζ2)Tb(ζ2)

−1
Ta(ζ1)

−1)Q−(ζ2;α)Q+(ζ1;α)] (72)

with the ‘boundary’ matrix

B(ζ ) = (ζ − ζ−1)

2(ζq − ζ−1q−1)(ζq−1 − ζ−1q)


0 0 0 0
0 ζ + ζ−1 −q − q−1 0
0 −q − q−1 ζ + ζ−1 0
0 0 0 0

 (73)

and Q± the same operators as defined in [6],

6 Here we take only the spin-0 sector.
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Q+
[1,n](ζ, α) = tr+

A

(
q2αDAT

+
A,[1,n](ζ )−1

)
(1 − q2(α−S)), (74a)

Q−
[1,n](ζ, α) = tr−A

(
q−2α(DA+1)

T
−
A,[1,n](ζ )−1

)
q2S(1 − q2(α−S)). (74b)

The form (71) of �1 is similar to the form shown in the appendix of [6]. It can be obtained
combining the ideas of [4, 6].

The limit in (71) exists, since the integrand is antisymmetric in ζ1, ζ2 in the limit α → 0.
This can be seen as follows. First of all ω(µ2, µ1;α)(ζ1/ζ2)

α is symmetric in ζ1, ζ2 for
α → 0 (see equation (19)). Next tra,b(Ba,b(ζ1/ζ2)Tb(ζ2)

−1Ta(ζ1)
−1) is independent of α and

antisymmetric in ζ1, ζ2, since B(ζ1/ζ2) is antisymmetric in ζ1, ζ2 and since [B(ζ1), R(ζ2)] = 0.
It remains to show that Q−(ζ2;α)Q+(ζ1;α) is symmetric for α → 0. This product is

meromorphic in α by construction. We show by an explicit calculation in appendix A that it
is regular at α = 0 and symmetric in ζ1, ζ2 in this point. In fact, adopting the notation

Q±(ζ ; 0)
(
e1

ε1
σ1

· · · en
εn

σn

) =
∑

σ ′
1,...,σ

′
n;ε′

1,...,ε
′
n

[Q±(ζ ; 0)]σ1,...,σn;ε1,...,εn

σ ′
1,...,σ

′
n;ε′

1,...,ε
′
n
e1

ε′
1

σ ′
1
· · · en

ε′
n

σ ′
n

(75)

for the matrix elements of the operators Q±(ζ ; 0) with respect to the canonical basis we obtain

[Q±(ζ ; 0)]σ1,...,σn;ε1,...,εn

σ ′
1,...,σ

′
n;ε′

1,...,ε
′
n
= δε1+···+εn,σ1+···+σn

δε′
1+···+ε′

n,σ
′
1+···+σ ′

n

×
[

n∏
j=1

εj ε
′
j (ζ/ξj )

− 1
2 (εj ε

′
j +σj σ

′
j )

ζ/ξj − ξj /ζ

]
q

1
2

∑
1�j<k�n((εj −ε′

j )ε
′
k−(σj −σ ′

j )σ
′
k). (76)

Hence,

Q−(ζ2; 0)Q+(ζ1; 0) = Q+(ζ2; 0)Q+(ζ1; 0) = Q+(ζ1; 0)Q+(ζ2; 0) = Q−(ζ1; 0)Q+(ζ2; 0), (77)

where we used the commutativity [Q+(ζ1;α), Q+(ζ2;α)] = 0 (see [8]) in the second
equation. �

Following the same lines one can show that the operator �1 is symmetric under the spin
reversal transformation,

�1 = J�1J. (78)

Moreover, �1 is symmetric under reversal of the direction of the magnetic field

�1 = �1|h↔−h, (79)

since ω is an even function of the magnetic field h. An actual calculation of the right-hand
side of equation (38a) or (71) demands to apply l’Hôpital’s rule. As a result one gets two
terms: one standing with ω(µ1, µ2; 0) which is even with respect to the transposition of µ1

and µ2 and another one with ω′(µ1, µ2; 0) which is odd with respect to µ1 ↔ µ2. This is the
same splitting as discussed in the paper [7]. In section 5, we will consider several examples
in order to illustrate this point.

Let us now come to the properties of the operator �2. We shall consider

Hj

(
e1

ε1
σ1

· · · en
εn

σn

) = lim
α→0

resζ=ξj
H[1,n]

(
e1

ε1
σ1

· · · en
εn

σn

)
. (80)

In the following we shall need an explicit formula which is also proved in appendix A,

H1
(
e1

ε1
σ1

· · · en
εn

σn

) = (
Qε1

σ1
R1;2,...,n

)(
e2

ε2
σ2

· · · en
εn

σn

)
, (81)

where the action of the operator R1;2,...,n is defined by

R1;2,...,n(X[2,n]) = R2,1 . . . Rn,1X[2,n]R1,n . . . R1,2 (82)
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with the standard R-matrix of the six-vertex model Ri,j = Ri,j (ξi/ξj ) and where the matrix
elements of the operator Qε1

σ1
are explicitly given by[

Qε1
σ1

]σ2,...,σn;ε2,...,εn

σ ′
2,...,σ

′
n;ε′

2,...,ε
′
n

= δε1+···+εn,σ1+···+σn
δε′

2+···+ε′
n,σ

′
2+···+σ ′

n

× ε1

2

n∏
j=2

εj ε
′
j (ξj /ξ1)

εj ε′
j

+σj σ ′
j

2

ξj /ξ1 − ξ1/ξj

q
1
2 {(ε1−σ1)

∑
2�k�n ε′

k+
∑

2�j<k�n((εj −ε′
j )ε

′
k−(σj −σ ′

j )σ
′
k)}.

(83)

Note that the limit α → 0 and the calculation of the residue at ζ = ξ1 in equation (81) may
not be interchanged.

The α = 0 limit of the residues at ζ = ξj for j � 2 can be obtained from formula (81) by
applying the exchange relations

Ři,i+1H[1,n](ζ ;α)(X[1,n]) = H(i,i+1)
[1,n] (ζ ;α)Ři,i+1(X[1,n]) (84)

with H(i,i+1)
[1,n] = H[1,n]|ξi↔ξi+1

and the action

Ři,i+1(X[1,n]) = Ři,i+1X[1,n]Ř
−1
i,i+1 (85)

for 1 � i, i + 1 � n. For example,

H2
(
e1

ε1
σ1

· · · en
εn

σn

) = R
ε′′

2 ,ε′′
1

ε2,ε1 (ξ2/ξ1)R
σ1,σ2

σ ′′
1 ,σ ′′

2
(ξ1/ξ2)

(
Qε′′

2

σ ′′
2
R2;3,...,n

)(
e1

ε′′
1

σ ′′
1
e3

ε3
σ3

· · · en
εn

σn

)
. (86)

A most important consequence of the explicit formula (83) is the reduction property.

Proposition 3.

H1
(
I1e2

ε2
σ2

· · · en
εn

σn

) = 0, (87a)

Hj

(
I1e2

ε2
σ2

· · · en
εn

σn

) = I1Hj

(
e2

ε2
σ2

· · · en
εn

σn

)
, 2 � j � n, (87b)

Hj

(
e1

ε1
σ1

· · · en−1
εn−1
σn−1

In

) = Hj

(
e1

ε1
σ1

· · · en−1
εn−1
σn−1

)
In, 1 � j � n − 1, (87c)

Hn

(
e1

ε1
σ1

· · · en−1
εn−1
σn−1

In

) = 0. (87d)

Proof. The first formula (87a) is rather trivial because from formula (83) it follows that∑
σ=±1

[
Qσ

σ

]σ2,...,σn;ε2,...,εn

σ ′
2,...,σ

′
n;ε′

2,...,ε
′
n

= 0.

The second formula (87b) is less trivial. Let us outline the proof for j = 2. First we use (86)
in order to obtain

H2
(
I1e2

ε2
σ2

· · · en
εn

σn

) = R
ε′′

2 ,ε′′
1

ε2,ε1 (ξ2/ξ1)R
ε1,σ2

σ ′′
1 ,σ ′′

2
(ξ1/ξ2)

(
Qε′′

2

σ ′′
2
R2;3,...,n

)(
e1

ε′′
1

σ ′′
1
e3

ε3
σ3

· · · en
εn

σn

)
(88)

and substitute equation (83). The latter should be separated into two parts in such a way that
only one of them is touched by two R-matrices on the right-hand side of (88). This part looks
like

V
ε′

1,ε
′′
1 ,ε′′

2

σ ′
1,σ

′′
1 ,σ ′′

2
(ξ1/ξ2)

:= 1

2
ε′

1ε
′′
1ε

′′
2
(ξ1/ξ2)

1
2 (ε′

1ε
′′
1 +σ ′

1σ
′′
1 )

ξ1/ξ2 − ξ2/ξ1
· q

1
2 ((ε′′

2 −σ ′′
2 )ε′

1−(σ ′′
1 −σ ′

1)(ε
′
1−σ ′

1)) · q
1
2 (ε′′

1 +ε′′
2 −σ ′′

1 −σ ′′
2 −ε′

1+σ ′
1)

1 ,
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where q1 = qε′
3+···+ε′

n and where the indices ε′
3, . . . , ε

′
n are considered to be fixed. The following

identity can be verified directly, for example, on a computer:

V
ε′

1,ε
′′
1 ,ε′′

2

σ ′
1,σ

′′
1 ,σ ′′

2
(ξ1/ξ2)R

ε′′
2 ,ε′′

1
ε2,ε1 (ξ2/ξ1)R

ε1,σ2

σ ′′
1 ,σ ′′

2
(ξ1/ξ2) = 1

2
δσ ′

1,ε
′
1
ε2q

1
2 (ε2−σ2)

1 .

If we substitute the right-hand side back into (88) and collect all pieces we come to the
statement that we wanted to prove, namely,

H2
(
I1e2

ε2
σ2

· · · en
εn

σn

) = I1H2
(
e2

ε2
σ2

· · · en
εn

σn

)
.

The other cases when j > 2 can be treated in a similar way. Formulae (87c) and (87d) are
simple consequences of the inversion of L-operators in the definition (55). �

Using proposition 3 one immediately comes to the reduction relation for �2 because the
restriction of (38b) to the interval [1, n] is

(�2)[1,n] = −
n∑

j=1

ϕ(λj ; 0)Hj . (89)

Proposition 4. Reduction identity for �2.

(�2)[1,n](X[1,n−1]In) = (�2)[1,n−1](X[1,n−1])In,

(�2)[1,n](I1X[2,n]) = I1(�2)[2,n](X[2,n]).
(90)

Due to (90) we may define �2 for the infinite chain through an inductive limit as in
equation (70).

Another immediate consequence of formula (83) is the spin reversal anti-symmetry. First
of all [

Q−ε1−σ1

]−σ2,...,−σn;−ε2,...,−εn

−σ ′
2,...,−σ ′

n;−ε′
2,...,−ε′

n

= −[Qε1
σ1

]σ2,...,σn;ε2,...,εn

σ ′
2,...,σ

′
n;ε′

2,...,ε
′
n

. (91)

Then, since the operator R1;2,...,n is symmetric with respect to the spin reversal transformation,

R1;2,...,n = J[2,n]R1;2,...,nJ[2,n], (92)

the operator H1 defined by (81) is spin reversal anti-symmetric

H1 = −JH1J. (93)

The same is true for the other residues Hj with j � 2. Hence, one concludes that

�2 = −J�2J. (94)

Moreover, due to the fact that the function ϕ given by equation (15) is an odd function of the
magnetic field we have

�2 = −�2|h↔−h. (95)

The splitting of the whole operator � in equation (37) into two terms �1 and �2 seems rather
natural because the two terms are even and odd with respect to the reversal of the spin and the
magnetic field, respectively.

5. Examples

In this section, we present explicit formulae for the density matrices for n = 1, 2 and for
some particular matrix elements and correlation functions for n = 3. Since the definition
of the operators b, c and H involves the multiplication of 2n 2-by-2 matrices and subsequently
the calculation of the traces over W + or W−, it is already cumbersome to work out by hand
the case n = 2. We preferred to use a little computer algebra programme for this task.
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5.1. The case n = 1

This case is rather simple because �1 = 0 and � = �2. Since �2 = �2
2 = 0 one should

expand the exponent in equation (36) only up to the first order with respect to �. A direct
calculation shows that the operator H1 acts on the basis elements as follows:

H1
(
e1

±
±
) = ± 1

2I1, H1
(
e1

∓
±
) = 0. (96)

Then from (89) one obtains �2 by multiplying the above result by −ϕ(λ1; 0). It is left to
substitute it into formula (36) and take the trace 1

2 tr1. Finally one obtains the inhomogeneous
density matrix:

D1(λ1|T , h; 0) = 1

2
I1 − ϕ(λ1; 0)

2
σ z

1 . (97)

In particular, setting λ1 = 0 one obtains (see (5) and (8a)) for (twice) the magnetization〈
σ z

1

〉
T ,h

= tr1
(
D1(T , h)σ z

1

) = −ϕ(0; 0). (98)

This result is in full agreement with equation (74) of [22].

5.2. The case n = 2

This case is already less trivial. First let us calculate �1. Using l’Hôpital’s rule and the fact
that the functions ω(µ1, µ2; 0) and ω′(µ1, µ2; 0) (recall the definition (20) of ω′!) are even
and odd, respectively, with respect to the transposition of µ1 and µ2 (see equation (19)) one
obtains

�1 = −ω(λ1, λ2; 0)�+
1 − ω′(λ1, λ2; 0)�−

1 , (99)

where

�+
1 = lim

α→0
(b1(α − 1)c2(α)(ξ1/ξ2)

α + b2(α − 1)c1(α)(ξ2/ξ1)
α),

�−
1 = lim

α→0
α(b1(α − 1)c2(α)(ξ1/ξ2)

α − b2(α − 1)c1(α)(ξ2/ξ1)
α),

(100)

and

bj (α) = resζ→ξj

(
b(ζ ;α)

dζ

ζ

)
, cj (α) = resζ→ξj

(
c(ζ ;α)

dζ

ζ

)
. (101)

The result of applying the operators �±
1 to the basis of the Sz = 0 sector is

�+
1

(
e1

ε
εe2

σ
σ

) = −εσ

4
cth(η)I1I2, �+

1

(
e1

ε
−εe2

−ε
ε

) = 1

4

ch(λ1 − λ2)

sh(η)
I1I2,

�−
1

(
e1

ε
εe2

σ
σ

) = −εσ

4η
cth(λ1 − λ2)I1I2, �−

1

(
e1

ε
−εe2

−ε
ε

) = 1

4η

ch(η)

sh(λ1 − λ2)
I1I2.

(102)

It is clear that (
�±

1

)2 = �+
1�

−
1 = �−

1 �+
1 = 0 (103)

which implies

�2
1 = 0. (104)

Also the symmetry with respect to spin reversal is obvious in the explicit formulae (102).
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Let us proceed with the anti-symmetric part. To obtain Hj for j = 1, 2 one can either
take the corresponding residues in formula (68) or one can use formulae (81) for j = 1 and
(86) for j = 2. The result is

H1
(
e1

ε
εe2

σ
σ

) = ε

2

(
f εσ

1 (ξ1, ξ2)e1
ε
εe2

ε
ε + f −εσ

1 (ξ1, ξ2)e1
−ε
−εe2

−ε
−ε + f εσ

2 (ξ1, ξ2)e1
ε
εe2

−ε
−ε

+ f −εσ
2 (ξ1, ξ2)e1

−ε
−εe2

ε
ε − σg1(ξ1, ξ2)

(
e1

−
+ e2

+
− − e1

+
−e2

−
+

))
,

H1
(
e1

−ε
εe2

ε
−ε

) = 1

2

(
q−1f ε

3 (ξ1, ξ2)e1
ε
εe2

ε
ε + qf −ε

3 (ξ1, ξ2)e1
−ε
−εe2

−ε
−ε + εq−1g+

2 (ξ1, ξ2)e1
ε
εe2

−ε
−ε

− εqg−
2 (ξ1, ξ2)e1

−ε
−εe2

ε
ε + g3(ξ1, ξ2)

(
e1

−
+ e2

+
− − e1

+
−e2

−
+

))
(105)

and

H2
(
e1

ε
εe2

σ
σ

) = σ

2

(
f −

1 (ξ1, ξ2)e1
ε
εI2 + f +

1 (ξ1, ξ2)e1
−ε
−εI2

)
,

H2
(
e1

−ε
εe2

ε
−ε

) = −ε

2

(
q−1f +

3 (ξ1, ξ2)e1
ε
εI2 + qf −

3 (ξ1, ξ2)e1
−ε
−εI2

)
,

(106)

where

f +
1 (ξ1, ξ2) := 1

1 − ξ 2
1

/
ξ 2

2

,

f +
2 (ξ1, ξ2) := (q − q−1)2 +

(
1 − ξ 2

1

/
ξ 2

2

)2(
1 − ξ 2

1

/
ξ 2

2

)
(qξ1/ξ2 − q−1ξ2/ξ1)(qξ2/ξ1 − q−1ξ1/ξ2)

,

f +
3 (ξ1, ξ2) := 1

ξ1/ξ2 − ξ2/ξ1
, and f −

i (ξ1, ξ2) := f +
i (ξ2, ξ1).

(107)

g1(ξ1, ξ2) := (ξ1/ξ2 + ξ2/ξ1)(q − q−1)

(qξ1/ξ2 − q−1ξ2/ξ1)(qξ2/ξ1 − q−1ξ1/ξ2)
,

g±
2 (ξ1, ξ2) := (q − q−1)2 + q±2(ξ1/ξ2 − ξ2/ξ1)

2

(ξ1/ξ2 − ξ2/ξ1)(qξ1/ξ2 − q−1ξ2/ξ1)(qξ2/ξ1 − q−1ξ1/ξ2)
,

g3(ξ1, ξ2) := q2 − q−2

(qξ1/ξ2 − q−1ξ2/ξ1)(qξ2/ξ1 − q−1ξ1/ξ2)
.

(108)

The anti-symmetry of the operators H1 and H2 with respect to the spin reversal transformation
is evident in the above formulae.

Also one can directly verify that

H2
1 = H2

2 = H1H2 + H2H1 = 0 (109)

and

Hj�1 + �1Hj = 0, j = 1, 2. (110)

This means that the operator �2 which is

�2 = −ϕ(λ1; 0)H1 − ϕ(λ2; 0)H2 (111)

satisfies

�2
2 = �1�2 + �2�1 = 0. (112)

From this follows that

�2 = 0 (113)

and the expansion of the exponent in formula (36) extends only up to the first order in powers
of �.
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Therefore in order to compute the elements of the density matrix we need to calculate the
traces

D2
ε1,ε2
σ1,σ2

(λ1, λ2|T , h; 0) = 1
4 tr1 tr2

[
(id + �1 + �2)

(
e1

σ1
ε1

e2
σ2
ε2

)]
. (114)

For this purpose we have to use formulae (99), (102) and (111), (105), (106). The result
decomposes as follows:

D2(λ1, λ2|T , h; 0) = Deven
2 (λ1, λ2) + Dodd

2 (λ1, λ2), (115)

where Deven
2 and Dodd

2 are 4 × 4 matrices,

Deven
2 (λ1, λ2) = 1

4
I ⊗ I +

1

4

[
cth(η)ω(λ1, λ2; 0) +

cth(λ1 − λ2)

η
ω′(λ1, λ2; 0)

]
σ z ⊗ σ z

− 1

4

[
ch(λ1 − λ2)

sh(η)
ω(λ1, λ2; 0) +

ch(η)

ηsh(λ1 − λ2)
ω′(λ1, λ2; 0)

]
(σ + ⊗ σ− + σ− ⊗ σ +)

(116)

and

Dodd
2 (λ1, λ2) = −ϕ(λ1; 0)

4
σ z ⊗ I − ϕ(λ2; 0)

4
I ⊗ σ z

− sh(η)(ϕ(λ1; 0) − ϕ(λ2; 0))

4sh(λ1 − λ2)
(σ + ⊗ σ− − σ− ⊗ σ +). (117)

The homogeneous limit λ1, λ2 → 0 can be readily taken. We obtain the density matrix for
n = 2,

D2(T , h) = 1

4

[
I ⊗ I − ϕ(σ z ⊗ I + I ⊗ σ z) − sh(η)ϕx(σ

+ ⊗ σ− − σ− ⊗ σ +)

+

(
cth(η)ω +

ω′
x

η

)
σ z ⊗ σ z −

(
ω

sh(η)
+

ch(η)ω′
x

η

)
(σ + ⊗ σ− + σ− ⊗ σ +)

]
, (118)

where we introduced the shorthand notation

ϕ = ϕ(0; 0), ϕx = ∂λϕ(λ; 0)|λ=0,

ω = ω(0, 0; 0), ω′
x = ∂λ1ω

′(λ1, λ2; 0)|λ1,λ2=0.
(119)

The density matrix (118) can now be used to obtain any two-site correlation function, e.g.,

〈
σ z

1 σ z
2

〉
T ,h

= tr12
(
D2(T , h)σ z

1 σ z
2

) = cth(η)ω +
ω′

x

η
, (120a)

〈
σx

1 σx
2

〉
T ,h

= tr12
(
D2(T , h)σ x

1 σx
2

) = − ω

2sh(η)
− ch(η)ω′

x

2η
. (120b)

The density matrix D2(T , h) simplifies in various limits. For vanishing magnetic field
ϕ = ϕx = 0, and the second and third terms in (118) vanish. Performing the T → 0 limit
we can replace ω with the explicit integral shown in the introduction of [6]. It is a useful
and simple exercise to confirm (118) in the free fermion limit � = 0 for h, T finite (compare
[23]).
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5.3. The case n = 3

The explicit forms of �j or Hj are already quite involved for n = 3. We shall not present the
exhausting list of matrix elements, but rather restrict ourselves to some examples of physical
interest.

We introduce shorthand notations

d
ε1,ε2
1 = f

ε1
1 (ξ2, ξ3)f

ε2
1 (ξ3, ξ1), d

ε1,ε2
2 = f

ε1
1 (ξ1, ξ2)f

ε2
1 (ξ3, ξ1),

d
ε1,ε2
3 = f

ε1
1 (ξ1, ξ2)f

ε2
1 (ξ2, ξ3), tε1,ε2,ε3 = f

ε1
1 (ξ1, ξ2)f

ε2
1 (ξ2, ξ3)f

ε3
1 (ξ3, ξ1).

(121)

Using these symbols, the longitudinal correlation is represented rather compactly. In the
inhomogeneous case we find

tr123
(
D3(λ1, λ2, λ3|T , h; 0)σ z

1 σ z
3

)
= th(η)

(
d++

1 + d
−−
1

)
ω(λ1, λ2; 0) + th(η)

(
d++

2 + d
−−
2

)
ω(λ2, λ3; 0)

+
(
2cth(2η)

(
d++

3 + d
−−
3

)
+ cth(η)

(
d

+−
3 + d

−+
3

))
ω(λ3, λ1; 0)

− 4sh2(η)

η
t+++(ω′(λ1, λ2; 0) + ω′(λ2, λ3; 0))

− 1

η

(
4ch2(η)t+++ − (t++− + t−+− + t+−−)

+ t+−+ + t−++ + t−−+
)
ω′(λ3, λ1; 0). (122)

Taking the homogeneous limit we arrive at〈
σ z

1 σ z
3

〉
T ,h

= 2cth(2η)ω +
1

4
th(η)ωxx − 1

2
th(η)ωxy +

ω′
x

η
− sh2(η)

4η
ω′

xxy. (123)

By x and y we denote the derivatives with respect to first and second argument taken at zero.
The same limit for the transverse correlation reads as follows:〈
σ +

1 σ−
3 + σ−

1 σ +
3

〉
T ,h

= − 1

sh(2η)
ω +

ch(2η)th(η)

4
ωxy − ch(2η)th(η)

8
ωxx − ch(2η)

2η
ω′

x +
sh2(η)

8η
ω′

xxy. (124)

The rational limit in the last two equations is not easy. Using the high-temperature expansion
we checked to O(1/T ) that it coincides with our previous result [1] for the XXX chain.

As a last example we show the emptiness formation probability in the inhomogeneous
case:

D+++
+++(λ1, λ2, λ3|T , h; 0) = 1

8 + 1
8 (−ϕ(λ3; 0) + C1(ξ1, ξ2, ξ3)ω(λ1, λ2; 0)

+ C2(ξ1, ξ2, ξ3)ω
′(λ1, λ2; 0) + C3(ξ1, ξ2, ξ3)ω(λ1, λ2; 0)ϕ(λ3; 0)

+ C4(ξ1, ξ2, ξ3)ω
′(λ1, λ2; 0)ϕ(λ3; 0) + cyclic permutations). (125)

Here the coefficients are given as follows:

C1(ξ1, ξ2, ξ3) = (
2cth(2η)

(
d++

1 + d
−−
1

)
+ cth(η)

(
d

+−
1 + d

−+
1

))
,

C2(ξ1, ξ2, ξ3) = 1

η
(−2ch(2η)t+++ − (t++− + t+−+ + t+−−) + t−−+ + t−+− + t−++),

C3(ξ1, ξ2, ξ3) = cth(η)
(
2
(
d++

1 + d
−−
1

)− (
d

+−
1 + d

−+
1

))
,

C4(ξ1, ξ2, ξ3) = 1

η
(−4ch2(η)t+++ + t++− + t+−+ + t−++ − (t−−+ + t−+− + t+−−)).

(126)

The homogeneous limit is left as an exercise to the reader.
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6. Conclusions

In an attempt to generalize the recent results [6, 8] on the factorization of the ground-state
correlation functions of the XXZ chain to include finite temperatures and a finite longitudinal
magnetic field we have constructed a conjectural exponential formula (37), (38) for the density
matrix. The main steps in our work were the construction of the operator H, equation (55),
which takes care of the modification of the algebraic part of the exponential formula in the
presence of a magnetic field, and of the functions ϕ and ω, equations (15), (17), which allowed
us to give a description of the physical part in close analogy to [6, 8]. In the limit T , h → 0
our conjecture reduces to the result of [6, 8], even for finite α. It also trivializes in the expected
way as T → ∞. We tested our conjecture against the multiple integral formula (9) by direct
comparison for n = 2 (see appendix B) and by comparison of the high-temperature expansion
data for n = 3 and n = 4. Judging from our experience with the isotropic case [17] we
find it likely that very similar formulae also hold in the finite length case and that the only
modifications necessary to cover this case are a restriction of � to the finite length L of the
chain and a change of the auxiliary function from (10) to (14).
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Appendix A. Proof of equations (76) and (83)

Here we outline the proof of equations (76) and (83). Our starting point is equation (74a).
Since we work in the sector Sz = 0, we have to set S = 0. Then

[Q+(ζ ;α)]σ1,...,σn;ε1,...,εn

σ ′
1,...,σ

′
n;ε′

1,...,ε
′
n
= (1 − q2α)

× tr+
A

((
L+

A(ζ/ξ1)
−1
)σ1

σ ′
1
. . .

(
L+

A(ζ/ξn)
−1
)σn

σ ′
n

(
L+

A(ζ/ξn)
)ε′

n

εn
. . .

(
L+

A(ζ/ξ1)
)ε′

1

ε1
q2αDA

)
, (A.1)

where
(
L+

A(ζ )
)ε′

ε
are the matrix elements of the L-operator (51a),

(
L+

A(ζ )
)ε′

ε
= iζ− 1

2 q− 1
4

(
qDA −ζa∗

Aq−DA

−ζaAqDA q−DA − ζ 2qDA+2

)
ε,ε′

(A.2)

and (
L+

A(ζ )
−1)ε′

ε
= iζ− 1

2 q
1
4

ζ − ζ−1

(
q−DA − ζ 2qDA ζq−DAa∗

A

ζqDAaA qDA

)
ε,ε′

. (A.3)

The main observation is that for the computation of the limit α → 0 of equation (A.1) it is
enough to substitute there L+

A and
(
L+

A

)−1
by L̃+

A and
(
L̃+

A

)−1
with7

(
L̃+

A(ζ )
)ε′

ε
= iζ− 1

2 q− 1
4

(
qDA −ζa∗

Aq−DA

−ζaAqDA q−DA

)
ε,ε′

= iζ− 1
2 q− 1

4 εε′ζ
1−εε′

2 a
− ε−ε′

2
A qε′DA (A.4)

7 Strictly speaking the operators L̃+
A and (L̃+

A)−1 are not inverse to each other any longer.
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and(
L̃+

A(ζ )−1
)ε′

ε
= iζ− 1

2 q
1
4

ζ − ζ−1

(
q−DA ζq−DAa∗

A

ζqDAaA qDA

)
ε,ε′

= iζ− 1
2 q

1
4

ζ − ζ−1
ζ

1−εε′
2 q−εDAa

− ε−ε′
2

A , (A.5)

where we set

a+
A = aA, a−

A = a∗
A. (A.6)

In this notation the algebra (48) looks very simple

aε
Aqε′DA = qεε′

qε′DAaε
A. (A.7)

The reason is as follows. Let us first formally substitute L̃+
A and

(
L̃+

A

)−1
for L+

A and
(
L+

A

)−1

into the right-hand side of equation (A.1),

(1 − q2α)

n∏
j=1

εj ε
′
j (ζ/ξj )

− 1
2 (εj ε

′
j +σj σ

′
j )

ζ/ξj − ξj /ζ
tr+

A

(
q−σ ′

1DAa
− 1

2 (σ ′
1−σ1)

A . . . q−σ ′
nDAa

− 1
2 (σ ′

n−σn)

A

× a
− 1

2 (εn−ε′
n)

A qε′
nDA . . . a

− 1
2 (ε1−ε′

1)

A qε′
1DAq2αDA

)
. (A.8)

We do not write the δ’s like on the right-hand side of (76) which reflect the fact that we are in
the spin-0 sector. Let us just imply that they are there.

Let us formally ignore all a±
A inside the trace here. Then the total degree of qDA is zero

because
∑

j ε′
j = ∑

j σ ′
j , and only q2αDA is left, which produces a term 1/(1 − q2α) after

taking the trace over the oscillator space A. Since the differences between L+
A and L̃+

A and

between
(
L+

A

)−1
and

(
L̃+

A

)−1
contain only positive powers of qDA , the insertion of such terms

does not change that most singular term 1/(1 − q2α) when α → 0. Therefore we can ignore
those differences when calculating the limit α → 0.

One more observation is about the contribution coming from the terms containing a±
A .

Suppose we had just

tr+
A

(
a

ε1
A . . . a

ε2n

A q2αDA
)

with ε1 + · · · + ε2n = 0. Then, using the algebra (48) we would conclude that again the most
singular term would be 1/(1−q2α) as a result of taking the trace. It means that if one succeeds
in collecting all a±

A then one can replace them by 1 without any change in the most singular
term. The first conclusion obtained from the above is that the limit α → 0 of the expression
(A.8) gives us the limit α → 0 of equation (A.1). Second, in order to calculate it we have to
collect all a±

A inside the trace (A.8) using the algebra (A.7) in one place, say in the place of
the symbol × in (A.8). If we do this and afterwards ignore the product of all a±

A following the
above arguments, then we can easily take the limit α → 0 and come to formula (76). Similar
arguments may be applied when treating the α → 0 limit of formula (74b).

Now we outline the derivation of formula (83). When calculating the residue at ξ1 which
is implied in equation (81) one obtains[
Qε1

σ1

]σ2,...,σn;ε2,...,εn

σ ′
2,...,σ

′
n;ε′

2,...,ε
′
n

= lim
α→0

resζ=ξ1 tr+
A

((
L+

A(ζ/ξ1)
−1
)σ1

σ

(
L+

A(ζ/ξ2)
−1
)σ2

σ ′
2
. . .

(
L+

A(ζ/ξn)
−1
)σn

σ ′
n

× (
L+

A(ζ/ξn)
)ε′

n

εn
. . .

(
L+

A(ζ/ξ2)
)ε′

2

ε2

(
L+

A(ζ/ξ1)
)σ
ε1
q2αDA

)
, (A.9)

where summation over σ is implied. The pole at ζ = ξ1 originates from the L-operators with
argument ζ/ξ1. We use the cyclicity of the trace and directly verify that

resζ=ξ1

(
L+

A(ζ/ξ1)
)σ
ε1

q2αDA
(
L+

A(ζ/ξ1)
−1
)σ1

σ
= −qα − q−α

2

[(
1

−aA

)
a∗

A(q−αaA, qα)

]
ε1,σ1

q2αDA.

(A.10)
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Implying that we need to calculate the limit α → 0 in the end we may set

(1 − qα)

[(
1

−aA

)
(1, a∗

A)

]
ε1,σ1

q2αDA = (1 − qα)ε1a
− 1

2 (ε1−σ1)q2αDA (A.11)

on the right-hand side of (A.10). Thus, we come to the conclusion that the right-hand side of
(A.9) is equal to

lim
α→0

[
(1 − qα) tr+

A

((
L+

A(ξ1/ξ2)
−1)σ2

σ ′
2
. . .

(
L+

A(ξ1/ξn)
−1)σn

σ ′
n

× (
L+

A(ξ1/ξn)
)ε′

n

εn
. . .

(
L+

A(ξ1/ξ2)
)ε′

2

ε2
ε1a

− 1
2 (ε1−σ1)q2αDA

)]
. (A.12)

Finally we can apply to equation (A.12) the same trick as described above in order to get
formula (83).

Appendix B. Factorization of the double integral

In this appendix, we show that our conjectured formula for the density matrix for n = 2,
equations (115)–(117), coincides with the double integral, equation (9) for n = 2. The density
matrix for n = 2 has six non-vanishing elements. In this appendix, we will denote it by D
rather than by D2 and suppress the temperature, magnetic field and α dependence of the matrix
elements for short. Using the Yang–Baxter algebra and reduction we find four independent
relations between the six non-vanishing matrix elements of D,

D+−
+−(λ1, λ2) = D+

+(λ1) − D++
++(λ1, λ2), D−+

−+(λ1, λ2) = D+
+(λ2) − D++

++(λ1, λ2),

D−−
−−(λ1, λ2) = D++

++(λ1, λ2) − D+
+(λ1) − D+

+(λ2) + 1,

D−+
+−(λ1, λ2) − D+−

−+(λ1, λ2) = sh(η)
(
D+

+(λ1) − D+
+(λ2)

)
sh(λ1 − λ2)

.

(B.1)

Inserting these relations into D(λ1, λ2|T , h; 0) we obtain

D(λ1, λ2|T , h; 0) = 1

4
I ⊗ I +

1

4

(
2D+

+(λ1) − 1
)
σ z ⊗ I +

1

4

(
2D+

+(λ2) − 1
)
I ⊗ σ z

+
1

4

(
4D++

++(λ1, λ2) − 2D+
+(λ1) − 2D+

+(λ2) + 1
)
σ z ⊗ σ z

+
1

2

(
D−+

+−(λ1, λ2) + D+−
−+(λ1, λ2)

)
(σ + ⊗ σ− + σ− ⊗ σ +)

+
sh(η)

2sh(λ1 − λ2)

(
D+

+(λ1) − D+
+(λ2)

)
(σ + ⊗ σ− − σ− ⊗ σ +), (B.2)

and we are left with the problem of expressing the one-point function D+
+(λ) and the two-point

functions D++
++(λ1, λ2) and D−+

+−(λ1, λ2) + D+−
−+(λ1, λ2) in terms of ϕ and ω.

Comparing (9) for n = 1 with the definition (15) of our function ϕ we find the relation

2D+
+(λ) = 1 − ϕ(λ; 0) (B.3)

for the one-point function.
In order to simplify our task for the two-point functions we introduce the quantum group

invariant combination [4]:

Dq(λ1, λ2) = eλ1−λ2D+−
−+(λ1, λ2) + eλ2−λ1D−+

+−(λ1, λ2) − e−ηD+−
+−(λ1, λ2) − eηD−+

−+(λ1, λ2).

(B.4)

Using again (B.1) we obtain the relation

ch(λ1 − λ2)
(
D−+

+−(λ1, λ2) + D+−
−+(λ1, λ2)

)
= Dq(λ1, λ2) + ch(η)

(
D+

+(λ1) + D+
+(λ2) − 2D++

++(λ1, λ2)
)
. (B.5)
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Hence, in order to determine the density matrix for n = 2, it suffices to calculate Dq(λ1, λ2)

and D++
++(λ1, λ2) from the double integrals.

Let us start with the simpler case Dq(λ1, λ2). Inserting (9) into the definition (B.4) we
find

Dq(λ1, λ2) =
∫
C

dω1

2π i(1 + a(ω1))

∫
C

dω2

2π i(1 + a(ω2))
det[−G(ωj , λk; 0)]r(ω1, ω2), (B.6)

where

r(ω1, ω2) = −eλ1+λ2 sh(λ1 − λ2 + η) sh(λ1 − λ2 − η)

eω1+ω2 sh(λ1 − λ2) sh(ω1 − ω2 − η)
. (B.7)

Using the simple relation

1

1 + a(ω)
+

1

1 + a(ω)
= 1 (B.8)

we can rewrite (B.6) as

Dq(λ1, λ2) =
∫
C

dω

2π i(1 + a(ω))
(r(ω, λ1)G(ω, λ2; 0) − r(ω, λ2)G(ω, λ1; 0))

− 1

2

∫
C

dω1

2π i(1 + a(ω1))

∫
C

dω2

2π i(1 + a(ω2))

× det[−G(ωj , λk; 0)](r(ω1, ω2) − r(ω2, ω1)). (B.9)

The first term on the right-hand side is already a single integral. For the second term we
observe that

− 1

2
(r(ω1, ω2) − r(ω2, ω1)) = ch(η)(e−2ω1 − e−2ω2) sh(λ1 − λ2 + η) sh(λ1 − λ2 − η)

(e−2λ1 − e−2λ2) sh(ω1 − ω2 + η) sh(ω1 − ω2 − η)
.

(B.10)

The ω-dependent terms in the denominator are proportional to the kernel in the integral
equation (11) for α = 0, and the numerator is a sum of a function of ω1 and a function of
ω2. Hence, the double integral can be reduced to single integrals by means of the integral
equation (11). Collecting the resulting terms and inserting the definition (16) of our function
ψ we arrive at

Dq(λ1, λ2) = sh(λ1 − λ2 + η) sh(λ1 − λ2 − η)

2sh(η)
ψ(λ1, λ2; 0). (B.11)

Let us proceed with the calculation of D++
++(λ1, λ2) which according to (9) is equal to

D++
++(λ1, λ2) = lim

α→0

∫
C

dω1e−αη

2π i(1 + a(ω1))

∫
C

dω2e−αη

2π i(1 + a(ω2))

× det[−G(ωj , λk;α)]
sh(ω1 − λ1 − η) sh(ω2 − λ2)

sh(λ2 − λ1) sh(ω1 − ω2 − η)︸ ︷︷ ︸
=s(ω1,ω2)

. (B.12)

Because of the antisymmetry of the determinant we may replace s(ω1, ω2) with

1

2
(s(ω1, ω2) − s(ω2, ω1))

= ch(η)(sh(2ω2 − λ1 − λ2 − η) − sh(2ω1 − λ1 − λ2 − η)) + ch(λ1 − λ2) sh(2(ω1 − ω2))

4sh(λ1 − λ2) sh(ω1 − ω2 + η) sh(ω1 − ω2 − η)
.

Then

D++
++(λ1, λ2) = J1(λ1, λ2) + lim

α→0
J2(λ1, λ2;α), (B.13)



Factorization of the finite temperature correlation functions of the XXZ chain in a magnetic field 10723

where

J1(λ1, λ2) =
 2∏

j=1

∫
C

dωj

2π i(1 + a(ωj ))

 det[G(ωj , λk; 0)] ch(η) sh(2ω2 − λ1 − λ2 − η)

2sh(ω1 − ω2 + η) sh(ω1 − ω2 − η) sh(λ1 − λ2)
,

J2(λ1, λ2;α) =
 2∏

j=1

∫
C

dωj e−αη

2π i(1 + a(ωj ))

 det[G(ωj , λk;α)] cth(λ1 − λ2) sh(2(ω1 − ω2))

4sh(ω1 − ω2 + η) sh(ω1 − ω2 − η)
.

Here J1(λ1, λ2) is of a form which allows us to carry out one integration by means of (11) (for
α = 0). The result is

J1(λ1, λ2) = 1

2
− 1

4
(ϕ(λ1; 0) + ϕ(λ2; 0)) − 1

4
cth(η)ψ(λ1, λ2; 0)

+
1

2
cth(λ1 − λ2)

∑
P∈S2

sign(P )

∫
C

dω G(ω, λP 1; 0) cth(ω − λP 2 − η)

2π i(1 + a(ω))
. (B.14)

For the calculation of J2(λ1, λ2;α) we express the hyperbolic functions in the integrand in
terms of the kernel (12) occurring in the integral equation (11) for G,

sh(2(ω1 − ω2))

sh(ω1 − ω2 + η) sh(ω1 − ω2 − η)
= K(ω1 − ω2;α) − K(ω2 − ω1;α)

2sh(αη)
. (B.15)

Then the integral over ω2 can be performed by means of the integral equation (11) for finite
α, and we obtain

J2(λ1, λ2;α) = −1

4
e−2αη cth(λ1 − λ2)

ψ(λ1, λ2;α) − ψ(λ2, λ1;α)

2sh(αη)

− 1

2
e−2αη cth(λ1 − λ2)

∑
P∈S2

sign(P )

∫
C

dω G(ω, λP 1;α) cth(ω − λP 2 − η)

2π i(1 + a(ω))
. (B.16)

From the definition (16) of ψ and from the integral equation (11) for G we infer the symmetry
property ψ(λ2, λ1;α) = ψ(λ1, λ2;−α) which can be used to carry out the limit α → 0 for
J2. Using it and inserting the α → 0 limit of (B.16) and (B.14) into (B.13) we arrive at

D++
++(λ1, λ2) = 1

2
− 1

4
(ϕ(λ1; 0) + ϕ(λ2; 0))

− cth(η)

4
ψ(λ1, λ2; 0) − cth(λ1 − λ2)

4η
ψ ′(λ1, λ2; 0), (B.17)

where the prime denotes the derivative with respect to α. Inserting now (B.5), (B.11) and
(B.17) into (B.2) and taking into account the definitions (17) and (20) of ω and ω′ the reader
will readily reproduce the density matrix (115)–(117) for n = 2.

Appendix C. The high-temperature expansions

We comment on the application of high-temperature expansions (HTE) to the multiple integral
formula, which provide important data for the construction of the conjectures in this report.
This may also be a basis for the numerical evaluation of correlations as demonstrated in
[42, 41].

As is usual, we assume an expansion of quantities in regular powers of 1
T

. We then
typically face the problem of solving a linear integral equation for a unknown function f (λ),

f (λ) = f0(λ) + ν

∫
C

dω

2π i
K(λ − ω;α)f (ω) := f0(λ) + νK ∗ f (λ), (C.1)
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where ν stands for some constant. The driving term f0(λ) is a known function which has at
most simple poles at λ = µi and a pole of certain order at λ = 0 inside C. Equation (C.1) can
be solved in an iterative manner,

f (λ) = f0(λ) + νK ∗ f0(λ) + ν2K ∗ (K ∗ f0)(λ) + · · · . (C.2)

The crucial observation is that K ∗ f0(λ) has poles at λ = ±η,µi ± η and that these
poles are outside of contour C. Thus, only the first two terms in (C.2) do not vanish and
f (λ) = f0(λ) + νK ∗ f0(λ) solves equation (C.1).

This mechanism makes it possible to evaluate each order in the HTE in an analytic and
exact manner. Of course, the evaluation of residues becomes more and more involved with
increasing order of 1

T
. Computer programs like Mathematica, however, can efficiently cope

with such a task and we obtain sufficiently many data for our purpose.
Here we present some examples which one can compute by hand. We consider the

nonlinear integral equation (10) under the assumption

a(λ) = 1 +
a(1)(λ)

T
+

a(2)(λ)

T 2
+ · · · .

Then comparing O
(

1
T

)
terms, one obtains the equation,

a(1)(λ) = a0(λ) − 1

2

∫
C

dω

2π i
K(λ − ω; 0)a(1)(ω), a0(λ) = −h − 2J sh2(η)

sh(λ) sh(λ + η)
.

We apply the above strategy and find the first thermal correction to a(λ) as

a(1)(λ) = −h +
2J sh3(η) ch(λ)

sh(λ) sh(λ − η) sh(λ + η)
.

Similarly the first correction to ā(λ) is found to be ā(1)(λ) = −a(1)(λ).
Equation (11) can be solved similarly. Let G(λ,µ;α) = G(0)(λ, µ;α) + G(1)(λ, µ;α)/

T + · · ·. Then the following explicit forms are obtained:

G(0)(λ, µ;α) = −coth(λ − µ) + eαη coth(λ − µ − η)

2
+ e−αη coth(λ − µ + η)

2
,

G(1)(λ, µ;α) = −h
K(λ − µ;α)

4
+

J sh3(η) ch(µ)K(λ − µ;α)

2sh(µ) sh(µ − η) sh(µ + η)

+
J sh ηK(λ;α)G(0)(0, µ;α)

2
.

All elements of the density matrix can now be evaluated up to O(T −1). A simple example
is the emptiness formation probability for n = 2,

D++
++(λ1, λ2|T , h; 0) = 1

4
+

a(1)(λ1) + a(1)(λ2)

8T
− J sh ηG(0)(0, λ2; 0)

4T

sh λ1sh(λ2 − λ1 + η)

sh(λ2 − λ1)sh(λ1 − η)

− J sh ηG(0)(0, λ1; 0)

4T

sh λ2sh(λ1 − λ2 + η)

sh(λ1 − λ2)sh(λ2 − η)
+ O(T −2).

The other basic functions are also readily evaluated:

ϕ(µ;α) = − h

2T
+

J sh η

2T
((1 − e−αη) coth(µ − η) + (1 − eαη) coth(µ + η)) + O(T −2),

ψ(µ1, µ2;α) = −1

2
K(µ1 − µ2;−α) +

(a(1)(µ2) − a(1)(µ1))G
(0)(µ2, µ1;α)

2T

− J sh η

T
G(0)(0, µ1;α)G(0)(µ2, 0;α) + O(T −2).
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One can then check the validity of our conjecture by comparing the multiple integral
formula for the density matrix and the exponential formula after substitution of the basic
functions by their HTE data up to O(T −1). The higher order terms can, in principle, be
checked in the same manner.

Before closing the paper, we sketch briefly how we used the HTE data to arrive at our
conjecture. Each density matrix element consists of two parts; Deven, the even part with
respect to the magnetic field, and Dodd, the odd part. The factorization for n = 2 can be
done fully in an analytic manner, as demonstrated in appendix B. This result and the previous
results of the XXX case motivate us to assume that the even part shares the same algebraic
part with the ground-state case. Then it is not difficult to identify two basic functions,
φ(λ1, λ2), φ̃(λ1, λ2). We can actually represent them by the single function ψ(λ1, λ2;α) such
that φ(λ1, λ2) = shη

2 ψ(λ1, λ2; 0), φ̃(λ1, λ2) = − shη

2η
∂
∂α

ψ(λ1, λ2;α)|α=0. This is one of the
advantages in using the disorder parameter α.

We then consider the odd part of n = 3. The most interesting sector is
Dodd

3
ε1,ε2,ε3
σ1,σ2,σ3

(λ1, λ2, λ3) with
∑

i εi = ∑
i σi = 1 to which nine elements belong. With use of

the Yang–Baxter relation and the intrinsic symmetry of the density matrix, one can represent
all the element by only one element. We choose Dodd

3
++−
−++ for this, with permutations of the

arguments (λ1, λ2, λ3). The resulting 6 objects are found to satisfy linear algebraic relations,
and the consideration of the kernel space implies the representation

Dodd
3

++−
−++(ξ1, ξ2, ξ3) = s1(ξ1, ξ2, ξ3)

ξ2
+

s2(ξ1, ξ2, ξ3)

ξ1ξ3
,

where ξi = eλi , and s1, s2 denote certain symmetric functions of ξi .
We then assume that s1, s2 are given by sums of products of rational functions of xi and

the basic functions ϕ, φ and φ̃, e.g.,

s1(ξ1, ξ2, ξ3) = V0(ξ1, ξ2|ξ3)ϕ(ξ3; 0) + V1(ξ1, ξ2|ξ3)ϕ(ξ3; 0)φ(ξ1, ξ2)

+ Ṽ1(ξ1, ξ2|ξ3)ϕ(ξ3; 0)φ̃(ξ1, ξ2) + cyclic permutations.

Vj (ξ1, ξ2|ξ3) is symmetric in ξ1, ξ2 (j = 0, 1) while Ṽ1(ξ1, ξ2|ξ3) is anti-symmetric.
Furthermore, we restrict the possible forms of these coefficients according to our previous

experience such that

V0(ξ1, ξ2|ξ3) = p0(ξ1, ξ2|ξ3)(
ξ 2

1 − ξ 2
3

)(
ξ 2

2 − ξ 2
3

) , V1(ξ1, ξ2|ξ3) = p1(ξ1, ξ2|ξ3)(
ξ 2

1 − ξ 2
3

)(
ξ 2

2 − ξ 2
3

) ,
Ṽ1(ξ1, ξ2|ξ3) = p̃1(ξ1, ξ2|ξ3)(

ξ 2
1 − ξ 2

3

)(
ξ 2

2 − ξ 2
3

)(
ξ 2

1 − ξ 2
2

) .
Now pj and p̃1 are polynomials in ξi and pj (p̃1 ) is symmetric (anti-symmetric) in ξ1, ξ2.

We then assume polynomials of certain orders with desired symmetry for them and fix the
unknown coefficients so as to match the HTE data. All these parameters are fortunately fixed
by the data up to O(T −3). At the final stage, several hundreds of terms are cancelled just
by fixing one parameter, which looks rather convincing. We then check that the choice of
parameters actually recovers the O(T −4) terms in the HTE. After this procedure, we arrive
at expressions for the density matrix elements now written in terms of rational functions and
basic functions. We then try to fit them into the exponential formula. This requires the new
operator H in the main body. Once it is identified, it is easy to write down the conjecture for
n = 4. Then again we test the validity against the HTE data for the multiple integral formulae
of the density matrix.
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